
Linux Shell Scripting : A Brief Primer

- By www.ihaveapc.com Team

Table Of Contents :

1. Shell – What is it good for ?
2. The First Linux Shell Script
3. Some More Fun Shell Scripts
4. Variables
5. Loops
6. User Interaction

 w w w . i h a v e a p c . c o m

http://www.ihaveapc.com/

 Shell – What is it good for ?

The most powerful thing Linux offers is the shell. The shell is a command line interpreter similar to
the command prompt in Windows.

 It helps in managing processes, run programs and tons of other important stuff. The command
prompt is the interactive part of the shell. When you copy files, delete directories, check if a system
is working or not through various commands, shell does that for you.

Where there is shell, there are scripts. Simply put, scripts are tiny programs that do what you want
them to do thereby freeing you from doing repetitive tasks. Scripts can be anything like checking an
IP address of your computer, finding out what the free disk space is in your Linux system or even
generating various system based reports.

The First Linux Shell Script

Let's see how to get started with Linux shell scripting using Linux Mint.

What you will need is a Linux system :) and a cool text editor. Bluefish editor is a really cool one
for this. Examples in this ebook used Linux Mint system and Bluefish editor to write the scripts.

The first shell script : Finding the computer name in Linux Mint

The first line in above example or any Linux shell script (#!/bin/bash in this case) tells the shell
which shell to use to run the script. This is called a 'shebang'. So #!/bin/bash specifies bash shell to
be used for executing this script.

The next two lines are all comments, anything worth mentioning that gives info about the script
should be included by first typing #.

Finally, the command that does the job of finding the Linux Mint computer name is entered on last
line – hostname.

That's it ! You have made your first Linux Mint shell script. Now to make it work, we first save it
with a relevant name like sysname.sh

 w w w . i h a v e a p c . c o m

http://bluefish.openoffice.nl/index.html

To make it executable so that it can run, type in chmod a+x sysname.sh

One thing to note is that by default if you are in directory A and your script is in directory B, it
won't execute because it won't be found. To fix this, either define the path of your script in the
$PATH using export command or simply execute the script from the directorty it is present in.
The above script is saved on my desktop, so I will execute it from my Desktop folder with the
command ./sysname.sh

Voila, it works ! What the script did was what we wanted it to do, list the name of the current
computer. In short, to do something using a Linux script, first write the script, save it somewhere
and then make it executable. After that, run it and be overjoyed :)

[Note that all examples from now won't mention the step of chmod a+x, so if you make a script and
then get Permission Denied error, do ensure that the script being run is made executable first.]

Just to make the above script a bit more clear, let's output some text. This is done with the help of
echo.

Example :
echo “ Some text here “. The result would be : Some text here

There are certain nuances when using echo command in shell scripts like when using echo without
quotes, we can't use a semicolon and so on. Make sure to read the man page of echo (man echo in
Terminal to get an overall idea).

The above script is modified to include echo as follows :

The output for above will be :

 w w w . i h a v e a p c . c o m

http://ihaveapc.com/2011/03/using-man-pages-in-linux-mint-ubuntu-a-brief-primer/

It just outputs the text we want to display for some clarity, that's all.

Script that prints current date and time, displays who is currently logged in and shows for how
long the system has been running :

Terminal commands date, who and uptime are used with some meaningful text to tell you what is
really being displayed. Note that we used echo -n to format the output. On running the script we
get :

Pretty handy info to get and that too by only writing the above script once and running it again and
again !

Let's check out other stuff related to shell scripting. Do note that as this is a very brief ebook, many
concepts won't be covered in depth but what this ebook will do is get you up and running on
understanding as well as using Linux shell scripts.

Variables

Writing shell scripts is a sort of programming itself with Linux shell following it's own rules and
syntax. Variables, loops and user interaction are the heart of any shell script.

Variables help you store temporary information which can be retrieved later in the script. Consider
this simple script that demonstrates just that :

 w w w . i h a v e a p c . c o m

What the above script does is read the user details of the currently logged in user, these are basically
system variables already defined and are in all capitals ($USER, $UID and $HOME) which are
echoed out. Note that $ is used to output the contents of a variable.

Here is what the output of the script is :

One more example to get the idea of a user-defined variable compared to the system variable clear :

Here we have defined two variables named rosecolor and violetcolor each with values red and blue.
Note that to properly output them in a sentence we use $ sign like $rosecolor and $violetcolor.

The output of above script is :

Just FYI, the other way to output the same variable values is ${var_name}.

Loops

Loops do what they mean. Check for some condition and execute some stuff as defined. The

 w w w . i h a v e a p c . c o m

simplest and pretty useful loop used in shell scripts is the if-then-else loop. There are various other
loops too like while, for, until but for simplicity the most common loop is described here.

Here is how it works :

If some command
then
 do some commands as mentioned here
else
do these commands here
fi

An example of script where loop is used will make it more clear.

The above script checks if a command (uptime in this case) is valid or not, if it is valid it will
display it's contents else will output an error.

The output of this script is :

As uptime is indeed a valid command, the script displayed it's output along with the correct
message.

Let us change it to a fake command and see what message do we get :

 w w w . i h a v e a p c . c o m

A fake command or any random text that is not a command is entered in above script, output for this
script is :

As you can see, since the if statement couldn't find the above as a real command, the else part was
executed displaying some error message.

Here is a cool script based on the loop discussed above :

The purpose of the above script is to check for a specific user name, if present it will list all the files
of that specific user folder. This is done by using grep on /etc/passwd fileHere, the above script will
list all contents of Pictures folder if the user named avp exists.

The output for this script is :

The user named avp did exist based on /etc/passwd file info so it displayed all the files present in
the /home/avp/Pictures folder.

 w w w . i h a v e a p c . c o m

Awesome isn't it, few lines that can accomplish so much ?

User Interaction

Now let's take a look at how Linux shell scripts can interact with users.

The below script will ask a user who runs this script for password and confirms that the password is
read without displaying it back on the Terminal :

Output for this is :

This is done by using stty -echo which will hide the typed characters. To turn the displayed
characters on, simply use stty echo (right after the password was entered by the user in this case.)

Here is one more, this script will read your name and output it back. This is a basic and classic
example of how programs work by taking in inputs from user, process them and display the results.

Output is :

 w w w . i h a v e a p c . c o m

What it did was read the user name and stored it in variable $NAME, and then echoed it back that's
all.

As mentioned earlier, Linux shell scripting is a vast topic and so we are not able to include many
other things here like functions, arrays and other loops but the examples in this ebook should be
more than sufficient to get you started on your own in understanding the wonderful art of Linux
shell scripting as well as automating repetitive tasks.

When in doubt of any Linux command, you can always use man pages to get help. A brief post
explaining how to use man can be found here. Also if you want to understand the basics of Linux
Terminal commands, we have an awesome free ebook here.

Hopefully you have enjoyed reading this ebook as much as we enjoyed making it.

Cheers.

The I Have A PC Team
www.ihaveapc.com

 w w w . i h a v e a p c . c o m

http://www.ihaveapc.com/
http://ihaveapc.com/2010/12/a-new-year-giveaway/
http://ihaveapc.com/2011/03/using-man-pages-in-linux-mint-ubuntu-a-brief-primer/

